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1.  Introduction 

This report follows directly from our two previous interim reports that detailed our 
experiments that developed and evaluated fusion frameworks for multi-feature object 
tracking. For context, this report first briefly summarises the two previous interim 
reports. However, the main focus of this report is a technical description of our vehicular 
tracking system and its performance on Unmanned Aerial Vehicle (UAV) video data. 
Specifically, we target the simultaneous use of both visible spectrum and thermal infrared 
video for tracking.  

1.1  Summary of Previous Work 

In our first interim report of March 22, 2006, [1] a number of fusion schemes for 
combining information from standard CCTV and thermal infrared spectrum video were 
explored in the context of tracking surveillance objects. We experimented on numerous 
real world multimodal surveillance sequences in challenging environments. The result of 
evaluating the performance of these fusion schemes, led to the development of our fusion 
framework for multi-spectral object tracking using banks of individual spatiogram 
trackers.  

This general-purpose fusion framework for multi-spectral object tracking was described 
in our second interim report of February 28, 2007 [2]. In this report, the technical details 
of the spatiogram bank tracker were described and the justification behind its formulation 
was given. We showed how this followed from the fusion scheme evaluation of the first 
report and how this was better suited to multi-feature tracking than the commonly-used 
histogram-based tracking. Tracking performance was shown to be superior to other 
standard tracking methods for a variety of testing sequences.   

1.2  Overview of this report 

This report details our system for vehicle detection and tracking in multi-spectral UAV 
video data. The work builds upon the tracking framework previously developed, using 
the spatiogram bank tracker as a core component of the overall system. Camera motion is 
compensated by automatically performing image alignment and computing the 



homographic warping that describes the movement of the ground-plane in relation to the 
camera. By aligning subsequent frames, moving vehicles can be detected using image 
differencing, adaptive thresholding and selection of appropriately sized regions. Banks of 
spatiogram trackers are then used to perform object tracking and to fuse data from both 
the visible spectrum and thermal infrared video. Results are shown indicating the success 
of this approach on UAV data from the DTO VACE dataset collection. Finally, we note 
the challenges posed by this difficult application and propose future directions for this 
work in tackling these issues.  

2.  System Overview 
 

The system can be viewed at a high level as a single block which simply takes input of 
frames from the visual and infrared spectrum videos, and after processing returns the 
locations of tracked vehicles in each frame. The system is composed of a number of 
subsystems, depicted in the Figure 1, along with intermediary inputs and outputs. Inputs 
and outputs are represented as boxes, while circles represent subsystems. The various 
stages of processing involved are outlined in more detail below. 
 
 

 
Figure 1: High Level System Overview 

 
2.1 Frame Alignment 

 
Where infrared video is available, it is often inconveniently misaligned with its visible 
spectrum counterpart. In order to use these two sources of data successfully in the 



tracking stage, they need to be reasonably well aligned. There are two types of alignment 
to consider – temporal and spatial. It is assumed that both cameras capture frames at the 
same rate, so that, once aligned, the temporal displacement does not drift. This was found 
to be a reasonable assumption in the video data we used. Alignment such as this can also 
be implemented in hardware, as we did in our previous work using camera gen-lock [5]. 
The second aspect, spatial alignment, is necessary due to potential differences caused by 
slightly different camera locations on the UAV itself and differing fields of view as a 
result. As a consequence, the IR images must be aligned to the visible images in order to 
provide suitable input for the tracker. 

 
Once the video frames are temporally aligned, the frames are spatially aligned by scaling 
the resolution of the IR frame to match the visible frame (the IR frame is typically 
smaller). A homography is then computed in a least-squared-error approach using 
manually selected corresponding points between the infrared and visible images. This 
homography is used to warp the IR image to the visible image. A single homography is 
sufficient for a single sequence, since the cameras are in a fixed position relative to each 
other. This is illustrated in figure 2. 
 

 
Figure 2: Example frame alignment: (a) visible frame (b) temporally aligned infrared frame, (c) spatially 

aligned infrared frame 
 

2.2 Vehicle Detection 

 
For initialisation, our tracker requires external input in the form of bounding boxes 
encompassing the regions to be tracked (i.e. the vehicles) in the first frame of video. To 
achieve this, a vehicle detection phase takes as input the first frame of visible footage. 
The detection phase assumes the vehicles are moving, and highlights them by detecting 
the dominant camera motion and subtracting this to highlight those objects moving 
independently of the camera. It does this by computing a homography between a set of 
points in the first frame and the set of points n frames later. Typically we use a time step 
of 20 frames. We warp the frame using the computed homography and then subtract this 
from the original frame. The result is an image which highlights objects moving 
independently of the ground plane (i.e. vehicles) as pairs of bright ‘blobs’ – see figure 3. 



 
Figure 3: Intermediary output of detection: (a) visible frame, (b) corresponding vehicles highlighted as 

pairs of bright ‘blobs’ 
 

This result can sometimes be quite noisy, and thus some further processing is required 
before we can clearly identify relevant ‘blobs’. The image is binarised using the dynamic 
thresholding method of Otsu [4], and then small regions caused by noise are removed 
using size-based filtering – see Figure 4, for example. We calculate the spatial centres of 
the remaining blobs, and based on distances between those centres, pairs of blobs related 
to a single vehicle are identified and a bounding box is constructed. 
 

 
Figure 4: Noise removal (a) visual spectrum image, (b) black & white highlighted ‘blobs’ with a little 

noise, (c) after noise removal 
 
 
 

2.3 Vehicle Tracking 

 
These initial bounding boxes, corresponding to the top left x and y co-ordinates of the 
box, and its width and height are used to initialise the tracker – in subsequent frames it 
uses the bounding boxes from the previous frame. The tracker uses the visible spectrum 
and thermal infrared image of the current frame to create a multi-band image using the 
RGB components of the visible image and the IR image as a fourth channel. Using this 
multi-spectral image, the object model for each vehicle is created by extracting a bank of 
spatiograms at the corresponding bounding box location. 
 
In subsequent frames, tracking continues by finding the best matching candidate in a 
search window centred on the previous location of the vehicle. Matching is determined 



using a newly proposed spatiogram similarity measure that was shown to be superior to 
the originally proposed measure. This new measure was described and evaluated in our 
recent publication [3]. 
 

3.  Testing 
 

In order to evaluate the system’s performance we used video from the DTO VACE 
Unmanned Autonomous Vehicle (UAV) data corpus. There were a number of issues to 
be considered in using this collection. First, the amount of video that does not feature any 
moving vehicles at all is non-negligible, and we removed such data from further 
consideration. Thus we looked for data which had visible and corresponding IR video 
that was reasonably aligned.  

 
Videos were fed to the system as sets of jpeg frames extracted from the videos. The 
tracker returned its results as a new set of frames taken from the visible videos, with 
vehicles highlighted. Examples of the results can be seen in the tracked sequences in 
figure 5. These sequences illustrate some of the benefits of the proposed tracker. 
 
Sequence (a) illustrates tracking of multiple targets of very small size, and also 
showcases the tracker’s handling of shadowed areas. Shadows can present a challenge by 
significantly altering the distribution of colour in a target area, and in the presence of 
particularly hard shadows, it is possible for dark vehicles to disappear almost completely. 
In this sequence, there are instances of shadowing or partial shadowing which the tracker 
recovers from – at the first corner, and from the trees along the straight stretch of road. 
 
In sequence (b), the difficulty of challenging colour is presented. In this sequence, the 
video is highly saturated due to strong sunlight, causing the vehicles to appear nearly the 
same colour as their surroundings i.e. white. In this instance, however, the tracker can 
still successfully hold its targets. 
 
In sequence (c), we are presented with a similar scenario as in (a), in terms of the 
presence of shadowing and vehicle size. However this sequence also features a camera 
that shifts quite significantly in a reasonably short period of time. Although not perfect, 
the tracker manages to retain focus on 2 out of 3 targets. 

 



 
 
 

Figure 5: The tracker highlights vehicles on the image using a transparent red mask. 
 
The system’s flexibility in accommodating multiple features without incurring the 
exponentially increasing computational cost of other techniques such as histograms is one 
of its key strengths, and can be leveraged further for improved capability and robustness. 
Next we will discuss opportunities for future improvement generally. 
  

4. Future Work 
 
The system presented here presents a number of opportunities for further work. We will 
discuss some specific issues in various stages of the system and propose strategies that 
could be implemented to address them. 

 
 

 



4.1  Detection  

 

As discussed earlier, the tracker needs to be initialised with bounding boxes. These are 
obtained from the previous frame by the tracker, but to provide initialisation, bounding 
boxes need to be provided outside of the tracking subsystem. As described, these are 
provided by an automatic detection phase. Thus, in the current system, vehicles in the 
first frame can be detected and subsequently tracked, but this does not accommodate the 
introduction and tracking of new vehicles beyond the first frame. It would be reasonably 
straightforward to build upon the current detection system so that new trackers can be 
initialised as new vehicles are detected; however there is a challenge in balancing the 
detection phase such that subsequent tracking is not made redundant. Detection of 
vehicles on a per-frame basis would be tantamount to per-frame tracking of vehicles and 
tracking in such a manner using our current detection system would be much more 
computationally expensive than the spatiogram trackers.  
 
We can balance these concerns by perhaps exploiting temporal and spatial coherency in 
the detection phase by only running detection every n frames, and performing per-frame 
tracking in between using the spatiogram tracker. Using such an approach there may be a 
small lag between when a vehicle appears and when it begins to be tracked, but human 
perception would gauge that lag to be small. 
 
Furthermore, the detection phase could be improved to be more reliable. This phase can 
be sensitive to noise, making reliable detection difficult, but this could be offset by 
checking multiple frames and seeing where detection results between those frames agree. 
 
 
4.2  Bounding Boxes 

 

The success of the tracker can be sensitive to the fit of a bounding box around a target. 
Boxes that include the target but are of varying size or location – even if that variation is 
small – can give significantly different results.  Tuning the detection phase to consistently 
produce a good fit should result in improved results. 
 
 
4.3 Occlusion 

   
The tracker can lose sight of vehicles in the presence of occlusion, typically from trees. 
The tracker already attempts to compensate via prediction, attempting to guess the 
location of the vehicle until it emerges from the occluded area. Long periods of occlusion 
can be problematic, but with short periods successful recovery is often possible as in 
figure 6, sequence (a). 
 
4.4 Appearance Change 

 

In addition to opaque occlusion, the appearance of the vehicles in the image can change 
due to a number of factors, which can lead to challenges for our tracker. The tracker 



currently is sensitive to changing orientation of targets within bounding boxes, for 
example. Spatiograms preserve some detail of the spatial distribution of colour within the 
target area, and this distribution changes when the orientation of a vehicle or other detail 
within the target area changes. This occurs quite typically when, for example, the vehicle 
turns a corner and the camera’s orientation does not similarly change. Another factor 
which can influence appearance is the existence of environmental shadows. Vehicles 
passing under dark shadows can be lost or confused with other vehicles. For example, in 
the sequence presented in figure 6 (b), the tracker loses a target as it enters a shadowed 
area. As with occlusion, it attempts to predict its location while it waits for the target to 
re-emerge, but in this instance the tracker confuses another vehicle for the shadowed 
vehicle and starts tracking it instead. Interestingly, shadows appear very strongly in the 
infrared video due to the temperature differences between areas that are shaded from 
direct sunlight and those that are not. 
 

 

 
Figure 6:  Instances of occlusion: (a) successful recovery from tree occlusion, (b) unsuccessful encounter 

with environmental shadows, with subsequent confusion of one vehicle for another 
 

 
For dealing with these last issues of occlusion and appearance change, as well as other 
challenges like large and fast shifts in camera motion, a general strategy for recovery 
from ‘lost’ targets is desirable. It would be possible to implement a system whereby the 
tracker could detect target loss or tracking failure. It could do so by checking the best 
similarity score for a target in each frame. If the best score has fallen below a certain 
threshold, the tracker could assume it has lost the target, and defer to the detection phase 
in order to relocate it. Another option would be to keep track of the vehicles direction of 
motion and velocity, and interpolate the bounding boxes using that information until the 
similarity score recovers. One or both of these approaches in unison could help 
significantly improve the tracker’s robustness and ability to deal with the issues 
mentioned above. 
 
Leveraging the framework’s flexibility in adding new features, it would also be 
interesting to investigate the addition of edge-based features alongside the visible and 



infrared spectrum data. Such an extension could help reduce the tracker’s sensitivity to 
lighting and contrast changes in the video. More generally, though performance was not a 
guiding concern in this work, optimisation of the processing involved would be desirable 
in order to improve performance.  
 

5. Conclusion 

 
This report describes our work in automatic vehicle tracking from UAV video data using 
visible spectrum and thermal infrared data. We first summarised our previous work on 
multi-modal tracking and justified the use of this fusion framework for our vehicle 
tracking system. Our system for vehicular tracking was described in detail and illustrative 
results of the detection and tracking performance were given. We concluded by providing 
many potential directions for future research. 
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